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Numerical analysis of the noisy Kuramoto-Sivashinsky equation in 211 dimensions

Jason T. Drotar, Y.-P. Zhao, T.-M. Lu, and G.-C. Wang
Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180-3590
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The nondeterministic Kuramoto-Sivashinsky~KS! equation is solved numerically in 211 dimensions. The
simulations reveal the presence of early and late scaling regimes. The initial-time values for the growth
exponentb, the roughness exponenta, and the dynamic exponentz are found to be 0.22–0.25, 0.75–0.80, and
3.0–4.0, respectively. For long times, the scaling exponents are notably less than the exponents of the Kardar-
Parisi-Zhang equation. Other properties, such as skewness and kurtosis of the height distributions, are exam-
ined. We also compare the numerical analysis with recent experimental results on ion sputtering of surfaces
that can be described by the KS equation.@S1063-651X~99!04601-2#

PACS number~s!: 05.40.1j, 05.45.Pg
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I. INTRODUCTION

The nondeterministic version of the Kuramot
Sivashinsky~KS! equation can be used to describe the e
lution of a surface ion-sputtered at normal incidence@1#. Fur-
thermore, for dimensions other than 111, many open
questions remain, such as whether or not the KS equa
exhibits the same scaling behavior as the Kardar-Pa
Zhang~KPZ! equation@1#. This question, which has alread
been addressed for the deterministic case in 111 dimensions
@2#, refers to the long-time~asymptotic! behavior of the KS
equation. The KS equation is given by

]h

]t
5n¹2h2k¹4h1

l

2
u¹hu21h, ~1!

whereh is the height of the interface~it is assumed that ther
are no overhangs!. The noise term,h, satisfies

^h~rW,t !&50 ~2!

and

^h~rW,t !h~rW8,t8!&52Dd~rW2rW8!d~ t2t8!. ~3!

The parametern is generally negative for the KS equation
contrast to the KPZ equation in which the Laplacian term
a positive coefficient and corresponds to a surface tensio
the KS equation, the combination of the¹2h and u¹hu2

terms models the effect of particles being knocked out of
interface by the bombarding ions. For other than normal
cidence, however, separate coefficients are needed in fro
each term contained within¹2h and u¹hu2 ~note that, with-
out separate coefficients, we have rotational symmetry as
must for normal incidence!. These terms can be derived fro
a simple model of ion bombardment in which the partic
are assumed to penetrate a fixed distance into the inter
and then spread their energy out with an asymmetric, th
dimensional Gaussian distribution@3,4#. The 2¹4h term
models the effect of surface diffusion@5#. The noise term is
present due to the randomness in the arrival of bombard
ions at the interface@4#. The 2D in Eq. ~3! refers to the
variance of the noise term and is proportional to the rate
bombardment@4#.
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The KS equation is believed to encompass many of
features that are actually realized in ion-sputtering exp
ments, such as ripple formation and KPZ-type scaling@6#.
However, many ion-sputtering experiments show expone
that are not consistent with the KPZ exponents@7,8#. This is
rather puzzling if we accept the KS equation as the equa
describing ion sputtering. However, for different experime
tal conditions, the parameters in the KS equation will
different. This can lead to differences in the length and ti
scales over which scaling behavior is observed. In particu
for low-energy experiments, it is possible for the crosso
times to become large enough to prevent the asymptotic
havior from being observed.

The belief that the KS equation scales, asymptotica
like the KPZ equation is based on analytical arguments@9#
and on direct numerical verification in 111 dimensions
@2,6#, but, so far, direct numerical verification has not be
attempted in 211 dimensions. The (211)-dimensional case
is, physically, the most important case. In addition, it h
been proposed that the KS equation cannot exhibit pow
law scaling in 211 dimensions@10#. Cuerno and Lauritsen
have applied a renormalization-group analysis to the
equation but were not able to obtain the values for
asymptotic exponents in 211 dimensions @1#. The
(111)-dimensional simulations of Sneppenet al. @2#, for
the deterministic case, and Cuernoet al. @6#, for the nonde-
terministic case, reveal that crossover to KPZ behavior o
occurs after the occurrence of early and intermediate sca
regimes, making it necessary to integrate the KS equa
over extraordinarily long times. It is desirable to see t
crossover to asymptotic KPZ behavior in 211 dimensions.

The purpose of this study is to examine, in detail, t
behavior of the KS equation. First, the early-time behavio
carefully examined. Then, guided by the qualitative aspe
of the (111)-dimensional case, we extend the simulations
longer times and larger system sizes. The results show,
surprisingly, a crossover from the early-time behavior to a
other scaling regime. The exponents are close, but not eq
to the KPZ exponents.

II. METHOD OF SOLUTION

It is useful to perform a stability analysis by a Fouri
transform of the linear terms of the KS equation. Denoti
177 ©1999 The American Physical Society
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178 PRE 59DROTAR, ZHAO, LU, AND WANG
the spatial Fourier transform ofh by F(h), we have

]F~h!

]t
52k2nF~h!2k4kF~h!, ~4!

wherek is the wave number. This implies~considering only
the linear terms! that periodic solutions with wave numberk

grow like F(h)5e2(nk21kk4)t. Hence, ifn is negative, there
will be a range of low frequencies that will grow expone
tially. Figure 1 shows the corresponding stable and unsta
regions. The critical wave number is given bykc5Aun/ku.
Of course, the nonlinear part of the equation will also b
factor in the time evolution of the surface. According to Ro
and Krug, the nonlinear term will couple modes with diffe
ent wave numbers, thus stabilizing the equation@11#.

The method used to solve the KS equation is a sim
numerical integration. The first step is to write the equat
as

Dh

Dt
5n¹2h2k¹4h1

l

2
u¹hu21S 24D

DtDr 2D 1/2

R~rW,t !, ~5!

where R(rW,t) is an uncorrelated uniform noise distribute
between21 and11. It is useful to rescale the KS equatio
using

h85h/h0 , rW85rW/r 0 , t85t/t0 . ~6!

If we let

h05n/l, r 0
25nt0 , t05k/n2, ~7!

we can eliminate all of the parameters from the equat
except for the coupling constant

g5Dl2/n3. ~8!

This is the same coupling constant that is left over a
rescaling the KPZ equation@12#. The random number gen
erator used produces a uniform distribution and has an
nite period@13#. The solution of Eq.~5! is simply the solu-
tion to an initial value problem in which the surface
initially flat.

FIG. 1. Growth spectrum for the linear part of the KS equat
with n520.2 andk52.0 with the lower cutoff for a 2563256
system shown.
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Because of the nonlinear term, the KS equation is sta
but extra care had to be taken to ensure numerical stab
The early-time simulations used the valuesD51, Dx51,
andDt50.005, while the long-time simulations usedD51,
Dx52, and Dt50.05. These were found to provide suffi
cient numerical stability for the parameter values used. P
gramming was done in C11.

From the numerical integration data, it was possible
determine the time-dependent height-height correlation fu
tion,

H~rW,t !5^@h~rW1rW8,t !2h~rW8,t !#2&. ~9!

Here,h is the interface height and the averaging is done o
therW8 variable. If we assume that dynamic scaling still hold
the height-height correlation function will take the form@14#

H~rW,t !52@w~ t !#2f S r

j~ t ! D , ~10!

with f (x)}x2a for x!1 andf (x)51 for x@1. Herew(t) is
the interface width defined byw(t)25^@h(rW,t)2h̄(rW,t)#2&,
j(t) is the lateral correlation length, anda is called the
roughness exponent. In the scaling regime, bothw(t) and
j(t) evolve in time as power laws,

w}tb ~11!

and

j}t1/z. ~12!

Hereb andz are the growth and dynamic exponents, resp
tively. In the dynamic scaling hypothesis, we have

z5a/b. ~13!

For early times, each of the exponents were obtained
fitting the function@15#

H~r !52w2H 12expF2S r

j D 2aG J ~14!

to the equal-time height-height correlation function. Th
function was fitted in log-log scale using an algorithm th
minimized the least-square difference. Since the long-ti
height-height correlation functions do not have the fo
given in Eq.~14!, these exponents had to be determined i
different way. Fora, this is done by fitting a line to ther
!j part of the log-log plot ofH(r ). The slope of this line is
2a. The growth exponent is found by fitting a line to th
log-log plot of w. The slope of this line isb.

III. RESULTS

In each of the simulations, the parametern was fixed at
n520.2, while the parametersl and k were varied. By
varying l, the coupling constantg could be varied. Varying
k made it possible to vary the extent of the instability in t
linear terms. Of course,k only affects the scaling in the
presence of an upper or lower cutoff ink caused by a finite
lattice spacing or finite system size, respectively. For
early-time simulations, a 2563256 lattice was used in eac
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PRE 59 179NUMERICAL ANALYSIS OF THE NOISY KURAMOTO- . . .
simulation withDx51, andD was set equal to 1. The growt
rates for low-frequency modes~due to the linear terms! are
shown in Fig. 1 withn520.2 andk52.0. The lower cutoff
for a system size of 2563256 is also shown. The uppe
cutoff due toDx51 is equal to 2p and is not shown. Clearly
the upper and lower cutoffs encompass most of the unst
portion of the growth spectrum.

Figure 2 shows the snapshots of surface morphology
n520.2, k52.0, andl51.0, at t54.85, 21.9, 46.8, and
100, respectively. There are no obvious ‘‘mounds’’ form
on the surfaces. With the increase of the growth time,
lateral length of the surface features becomes bigger and
ger. Figure 3 shows the corresponding height distributi
for these surfaces. Due to the presence of the noise term
distribution of heights was expected to be close to a Ga
ian distribution. The solid lines in Fig. 3 are the Gauss
best-fit curves. For early times, the distributions appear to
close to a Gaussian distribution, but at later times
skewed. This is not too surprising, because theh→2h sym-
metry is broken by the nonlinearu¹hu2 term. The deviation
from a Gaussian distribution can be characterized by sk
nessm3 and kurtosism4 , defined as

m35
^@h~rW !2h̄~rW !#3&

w3 , ~15!

m45
^@h~rW !2h̄~rW !#4&

w4 . ~16!

Skewness is a measure of the symmetry of a profile ab
the reference surface level. The sign of the skewness will
whether the farther points are proportionately above~positive
skewness! or below~negative skewness! the average surfac
level. Kurtosis is a measure of the sharpness of the he

FIG. 2. Two-dimensional images for various growth times w
the gray scale indicating the heighth ~dark indicates lowh!. Images
are 2563256 with n520.2, k52.0, andl51.0. ~a! t54.85. ~b!
t521.9. ~c! t546.8. ~d! t5100.0.
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distribution function. If most of the surface features are co
centrated near the mean surface level, the kurtosis will
less than if the height distribution contained a larger port
of the surface features lying farther from the mean surf
level. In addition, kurtosis describes the randomness of
surface relative to that of a perfectly random surface~Gauss-
ian distribution! that has a kurtosis of 3.0. Figure 4 plots th
interface widthw, the skewnessm3 , and the kurtosism4 as
functions of growth time forn520.2, k52.0, andl51.0.
The log-log plot of the interface widthw is a straight line for
t,10 with an initial growth exponentb>0.22– 0.25. This is
close to theb value of the KPZ model@12#. After t>30,
there is a dramatic change ofb, from 0.24 to about 0.7, as
shown in Fig. 4. Initially, the skewness is close to zero, a
the kurtosis is close to 3. However, with the increase of
growth time, both the skewness and the kurtosis incre
until a maximum is reached. The dramatic changes in b
skewness and kurtosis occur slightly earlier than that for
interface width. This shows that the nonlinear term took
tion before the system became unstable.

To determine the roughness exponent and dynamic ex
nent, it was necessary to compute the height-height corr
tion function. This was done at 20 different times for ea
simulation and the results forn520.2, k52.0, andl51.0
are shown in Fig. 5. In the log-log plot, the time-depende
height-height correlation functionsH(r ) at different times do
not overlap forr !j, which demonstrates that the KS equ
tion describes a growth process which is nonstationary
early times@16#. At this point, the roughness exponenta
determined through Eq.~14! is near 0.75–0.85, which is
quite different from the value of 0.38 that one obtains for t
KPZ equation in 211 dimensions@17#.

It is very interesting to study the time-dependent behav
of the exponents. In Fig. 6, an average over 15 runs for b

FIG. 3. Height distributions for various growth times wit
n520.2, k52.0, andl51.0.
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180 PRE 59DROTAR, ZHAO, LU, AND WANG
a andb as a function of growth timet is shown. These were
obtained by running 15 different simulations with differe
random number seeds. The error bars represent the stan
deviation of the results. The results forz are shown in Fig. 7.
The roughness exponenta remains almost the same throug
out the growth, while the growth exponentb behaves differ-
ently. Initially b remains almost a constant, then at a cert
time b starts increasing until a maximum is reached. Theb
decreases. In their (111)-dimensional simulations, Sneppe
et al.demonstrated thatb can reach a maximum, after whic
b will decrease to a constant for longer growth time@2#. The
same behavior can also be expected in 211 dimensions.

We also investigated the effect of the growth coefficie
l and k in the KS equation. Figures 8~a! and 8~b! plot the

FIG. 4. Interface width, skewness, and kurtosis vs growth ti
for n520.2, k52.0, andl51.0.

FIG. 5. Height-height correlation functions for various grow
times forn520.2, k52.0, andl51.0.
ard
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s

growth exponentb and roughness exponenta as a function
of growth time for variousl values. In fact, the change of th
l value affects the coupling constantg as shown in Eq.~8!.
The larger thel value, the stronger the coupling. Clearly fo
each differentl, b has a similar behavior as described abo
However, the onset of the increase inb occurs earlier for a
stronger coupling. The change ofl also affects the behavio
of a as shown in Fig. 8~b!. Initially, a is the same for dif-
ferentl. But at later times,a begins to decrease earlier asl
increases. The analytical result forl→0 is shown in Fig. 8
as a dashed curve. This was obtained by computing
height-height correlation functions analytically for differe
times and fitting them the same way that the simulation d
were fitted. The decrease ina in the analytical result for
early times is due to the deviation in the shape of the ea
time height-height correlation functions from the shape
the fitting function. As the coupling constant gets bigger,
effect of the nonlinearu¹hu2 term becomes more importan
This term has two impacts on the surface morphology, i.e.
make the spatial frequency higher and lower. For the ini

e

FIG. 6. Roughness exponenta and growth exponentb vs
growth time with error bars forn520.2, k52.0, and l51.0
averaged over 15 runs.

FIG. 7. Dynamic exponentz anda/b vs growth time with error
bars forn520.2, k52.0, andl51.0 averaged over 15 runs.



w
h
y
lly
on

n
m

e

b

ua

S
e
th
n
t

51
e

ig

o

ter
ion
t
-

ness
,

he
for

PRE 59 181NUMERICAL ANALYSIS OF THE NOISY KURAMOTO- . . .
stage, as the noise is a white noise, the nonlinear term
render the spatial frequency equally to the lower and hig
end. However, the linear term will amplify low-frequenc
parts and eliminate high-frequency parts. Therefore, initia
the nonlinear term helps the low-frequency accumulati
Thus, a will increase slightly. Alsob will increase. How-
ever, as the amplitude of the low-frequency compone
passes a certain value, the nonlinear term will start to eli
nate the low-frequency part. That will reduce both thea and
b values. Increasing thel value will increase the rate of th
coupling, thereby making the onset earlier.

A change ofk will also change the behavior ofa andb as
shown in Fig. 9. This change is different from that caused
varyingl. The initialb anda values are slightly different for
different k values. For later times, changingk amounts to
changing the location of the peak inb and not the height of
it. This is consistent with the rescaling resultt05k/n2. This
is also understandable in terms of the stability of the eq
tion. A higher value ofk will make the linear terms more
stable for a givenk, thus delaying the increase inb. The
same behavior also occurs fora although it is much less
obvious since the graph ofa is relatively flat compared to
that of b.

We also investigated the long-time behavior of the K
equation. The main difficulties in obtaining the long-tim
behavior of the KS equation were the need to increase
length of time over which the equation was integrated a
the need to increase the system size enough to delay
onset of saturation. To delay saturation, we used a
3512 lattice and setDx52. Figure 10 shows the interfac
widths and growth exponents for different values ofl. The
growth exponent was close to 0.20 in each case. The he
height correlation functions for different times withl52.0
are shown in Fig. 11. There are two interesting features

FIG. 8. ~a! Growth exponentb vs growth time and~b! rough-
ness exponenta vs growth time withn520.2,k52.0, and various
l. The dashed lines represent the analytical result forl50.
ill
er

,
.

ts
i-

y

-

e
d
he
2

ht-

f

this graph. First, the growth becomes stationary for la
times. Second, for later times, the height-height correlat
functions exhibit a bifractal structure with two differen
roughness exponents. Forl52.0, the upper part has a rough
ness exponent of 0.27 and the lower part has a rough
exponent of 0.71. Forl51.0, we obtained 0.28 and 0.76
while l54.0 yielded 0.25 and 0.65. The values for t
growth exponent were found to be 0.21, 0.18, and 0.16
l51.0, 2.0, and 4.0, respectively. Forl54.0, a 1024

FIG. 9. ~a! Growth exponentb vs growth time and~b! rough-
ness exponenta vs growth time with n520.2, l51.0, and
variousk.

FIG. 10. Long-time values of interface widthw and growth
exponentb for n520.2, k52.0, andl51.0, 2.0, and 4.0.
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182 PRE 59DROTAR, ZHAO, LU, AND WANG
31024 simulation was also run, and the interface width
shown in Fig. 12. Up tot52000, there is still no sign of a
crossover to another scaling regime.

IV. DISCUSSION

From a theoretical standpoint, the interesting aspect
the KS equation are its long-time scaling properties. T
(111)-dimensional numerical results of Sneppenet al., for
the deterministic case, show the presence of early and in
mediate scaling regimes, after which the growth expon
behaves like the (111)-dimensional KPZ exponent@2#. Our
simulations clearly indicate the presence of an early-ti
scaling regime. If one looks just at the growth exponent,
early-time behavior is consistent with Mullins diffusion, b
the roughness exponent is not consistent with just the2¹4h
term. Furthermore, these exponents cannot be explaine
just the linear terms in the equation. Clearly, the interplay
the linear terms with the nonlinear term is responsible for
observed exponents, and it is only for very long times t
one term in the equation dominates. What is not entir
clear is the nature of the late-time scaling regime. T

FIG. 11. Long-time height-height correlation functions for va
ous growth times forn520.2, k52.0, andl52.0.

FIG. 12. Interface width for 102431024 long-time simulation
with n520.2, k52.0, andl54.0.
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growth and roughness exponents in this regime are not
less than the KPZ exponents. This could mean one of th
things. First, it could mean that the asymptotic properties
the KS equation are not exactly those of the KPZ equati
Second, it could mean that our simulations have not
reached the asymptotic regime. This second possibility
also supported by the presence of early, intermediate,
asymptotic regimes in the (111)-dimensional deterministic
case. The third possibility is that our results might not c
respond to the strong-coupling limit of the KPZ equatio
Our own numerical integration of the KPZ equation show
roughness exponent of 0.29 forg523, which is very close to
the long-time values we observe for the KS equation. Ho
ever, Amar and Family find a roughness exponent of 0.39
g550 and 0.37 forg520 @18#. This indicates thata might
get smaller as the weak-coupling (g50) limit is approached.
Of course, the behavior should cross over to strong-coup
behavior for larger system sizes and longer times@18#.
Hence, our late scaling regime might correspond to ea
time KPZ behavior.

It is also instructive to compare our results with oth
numerical results for the deterministic KS equation. Proc
cia et al. have looked at the deterministic KS equation usi
direct integration @10#. They conclude that the long
wavelength properties of the deterministic KS equation
211 dimensions are not the same as those of the KPZ e
tion. In fact, they claim to show thata50. Our simulation
results appear to contradict this result for the noisy KS,
Procacciaet al. do not speculate on whether their resu
should apply to the nondeterministic case. Furthermore,
unlikely that even the deterministic (211)-dimensional KS
equation exhibits only Edwards-Wilkinson behavior. Proca
cia et al. find a by looking at the dependence of the satu
tion interface width versus system size. The log-log plot ow
versusL is shown forL ranging between 32 and 512. How

FIG. 13. Long-time two-dimensional images for various time
Images are 5123512 with Dx52.0, n522.0, k52.0, and
l51.0. Only a 2563256 portion is shown.~a! t5219.0. ~b! t
5468.0. ~c! t5700.5. ~d! t51000.
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TABLE I. The measured scaling exponents for several different ion-sputtering experiments are sh

System Method Energy~eV! a b Reference

Fe STM 5000 0.5360.02 @19#

Si~111! STM 500 0.760.1 0.2560.05 @7#

Si~111! HRLEED 500 1.1560.08 @20#

Ge~001! X-ray 1000 0.160.01, @21#

diffraction 0.460.05
Ge~001! STM 240 0.7060.03a @8#

Graphite STM 5000 0.2–0.4 @22#

GaAs~110! STM 300–500 0.26, 0.31 @23#

GaAs~110! STM 2000 0.3860.03 @24#

SiO2 Energy-dispersive
x-ray reflectivity

1000 1.0 @25#

SiO2 Energy-dispersive
x-ray reflectivity

150
300
1000

0.5 @26#

aThis value was estimated from Fig. 3~b! of @8#. Also, the growth for this system is not self-affine@8#.
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ever, for system sizes as small as 32332, saturation will
occur very early, and the asymptotic behavior will not
observed; even with a 5123512 lattice it is difficult~if not
impossible! to see the asymptotic behavior. Rost and Kr
have done (111)-dimensional simulations of a particl
model based on the KS equation@11#. Their model takes into
account the cellular structure that evolves in systems
scribed by the KS equation and gives exponents that coin
with the KPZ exponents@11#. While our results cannot be
expected to agree with the (111)-dimensional case, we d
see a cellular structure develop in the long-time surface m
phology, as shown in Fig. 13. This cellular structure is a
observed by Jayaprakash, Hayot, and Pandit in their
11)-dimensional simulations@9#.

Cuerno et al. have done (111)-dimensional numerica
integrations of the noisy KS equation@6#. Initially, they ob-
e-
de

r-
o
2

tain a growth exponent consistent with Mullins diffusio
but, at later times, the growth exponent increases and
decreases to the Edwards-Wilkinson value. KPZ behavio
obtained for only a short amount of time before saturat
occurs. This behavior is almost identical to the behavior
tained by Sneppenet al. for the deterministic case@2#. In our
simulations, we obtain a region in which the growth exp
nent is consistent with Mullins diffusion, followed by a re
gion in whichb increases suddenly and then decreases; h
ever, the region following this increase does not appear to
consistent with Edwards-Wilkinson growth (b50).

The results of our simulations reveal exponents that,
early times, are quite different from those of the KPZ equ
tion. The results of various ion-sputtering experiments
shown in Table I. For comparison, we list in Table II th
theoretical results of the exponents predicted by differ
s

finitely
r to the
TABLE II. The predicted scaling exponents for several different (211)-dimensional growth equation
are shown.

]h/]t5 Name a b z Reference

h Random 0.5 @17#

deposition
¹2h1h Edwards- 0 0 2 @17#

Wilkinson
¹2h1u¹hu21h KPZ 0.38 0.24 1.58 @17#

2¹4h1h Mullins 1 1
4 4 @17#

diffusion
¹2h2¹4h1h General linear 0–1a 0–0.25a 2–4a @27#

Equation
2¹2h2¹4h KS ~early time! 0.75–0.80 0.22–0.25 3.0–4.0 This work

1u¹hu21h
2¹2h2¹4h KS ~late time! 0.25–0.28 0.16–0.21 This work

1u¹hu21h
2¹2h2¹4h KS ~early time! 1 4 @1#

1u¹hu21h from RG approach

aThese values are for finite system size and finite lattice spacing. For infinitely large system size and in
small lattice spacing, the exponents are equal to Mullin’s diffusion values for early times and crossove
Edwards-Wilkinson values for later times@27#.
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184 PRE 59DROTAR, ZHAO, LU, AND WANG
growth equations. The general trend is that the values oa
for low-energy ~less than 1 keV! sputtering tend to agre
with the initial stage of our simulations, while the high
energy~greater than 1 keV! experiments have roughness e
ponents more consistent with the KPZ equation. In parti
lar, an ion-sputtering experiment performed by Chan a
Wang, using STM, shows agreement with the initial stage
our simulation results that is well within the experimen
error @7#. The ion-sputtering result of Yanget al., using a
diffraction technique, showsa51.1560.08 @20#. This result
is certainly not consistent with the KPZ equation, but neith
is it consistent with our simulation results. A possible exp
nation for the high value ofa is that Yanget al.assumed tha
the distribution of heights was a Gaussian. As Zhaoet al.
showed recently, if this criterion is not met, then the ne
out-of-phase diffraction analysis presented by Yanget al.
would not be adequate for the extraction ofa @28#. Also, one
Ge~001! sputtering experiment shows a transition betwe
two different scaling behaviors as a function of temperat
or ion current@21#, while another shows the development
ripples @29#.

It is instructive to investigate the failure of our simul
tions in describing high-energy sputtering. The model u
in constructing the KS equation relies on the assumption
the distribution of energy deposited by arriving ions is
.

d
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nd
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r

n
e

d
at

Gaussian@4#. However, the assumption of a Gaussian dis
bution holds only for low ion energies and breaks down
high ion energies@30#. Furthermore, a higher energy wi
shorten the crossover time, allowing the KPZ behavior to
observed.

V. CONCLUSION

The simulations we have performed should be conside
as a first step in explicitly demonstrating the scaling prop
ties of the KS equation in 211 dimensions. The long-time
exponents are close to the KPZ exponents, but our result
not answer conclusively the question of whether the
equation is in the same universality class as the KPZ eq
tion. A firm answer to this question would require longer r
times and larger system sizes in order to rule out the po
bility that our observed long-time scaling regime is, in fa
an intermediate scaling regime.
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