PHYSICAL REVIEW E VOLUME 59, NUMBER 1 JANUARY 1999

Numerical analysis of the noisy Kuramoto-Sivashinsky equation in 21 dimensions
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The nondeterministic Kuramoto-Sivashins¢S) equation is solved numerically in+21 dimensions. The
simulations reveal the presence of early and late scaling regimes. The initial-time values for the growth
exponentg, the roughness exponesnt and the dynamic exponentare found to be 0.22—0.25, 0.75-0.80, and
3.0-4.0, respectively. For long times, the scaling exponents are notably less than the exponents of the Kardar-
Parisi-Zhang equation. Other properties, such as skewness and kurtosis of the height distributions, are exam-
ined. We also compare the numerical analysis with recent experimental results on ion sputtering of surfaces
that can be described by the KS equati®1063-651X99)04601-2

PACS numbdrs): 05.40+j, 05.45.Pg

[. INTRODUCTION The KS equation is believed to encompass many of the
features that are actually realized in ion-sputtering experi-
The nondeterministic version of the Kuramoto- ments, such as ripple formation and KPZ-type scalié
Sivashinsky(KS) equation can be used to describe the evoHowever, many i_on-sputf[ering experiments show exponents
lution of a surface ion-sputtered at normal incidefie Fur-  that are not consistent with the KPZ expondm]. This is
thermore, for dimensions other than+1, many open rather puzzling if we accept the KS equation as the equation

questions remain, such as whether or not the KS equatioffScribing ion sputtering. However, for different experimen-
exhibits the same scaling behavior as the Kardar-Parisi@! conditions, the parameters in the KS equation will be
Zhang(KPZ) equation[1]. This question, which has already different. This can Ieao_l to d|ffere_nc¢s in the length ano! time
been addressed for the deterministic case-irl Idimensions scales over which scaling behavior is observed. In particular,

[2], refers to the long-timéasymptotig behavior of the KS for low-energy experiments, it is possible for the crossover
equation. The KS equation is given by times to become large enough to prevent the asymptotic be-

havior from being observed.
odh ) a A ) The belief that the KS equation scales, asymptotically,
5t =V h=«Viht 5 [Vh[*+ 7, (1) like the KPZ equation is based on analytical argumégis
and on direct numerical verification in+11 dimensions
whereh is the height of the interfacgt is assumed that there [2,6], but, so far, direct numerical verification has not been

are no overhangsThe noise termy, satisfies attempted in 2-1 dimensions. The (2 1)-dimensional case
is, physically, the most important case. In addition, it has
(n(F,1))=0 (2 been proposed that the KS equation cannot exhibit power-

law scaling in 2-1 dimensiong10]. Cuerno and Lauritsen
and have applied a renormalization-group analysis to the KS

equation but were not able to obtain the values for the
asymptotic exponents in 21 dimensions [1]. The

The parameter is generally negative for the KS equation in (11 1)-dimensional simulations of Sneppetal. [2], for
contrast to the KPZ equation in which the Laplacian term hadhe deterministic case, and Cuerebal. [6], for the nonde-

a positive coefficient and corresponds to a surface tension. [ffrMinistic case, reveal that crossover to KPZ behavior only
the KS equation, the combination of th&?h and |Vh]|2 occurs after the occurrence of early and intermediate scaling

terms models the effect of particles being knocked out of thé®d'mes, mak!ng It necessary to integrate the KS equation
over extraordinarily long times. It is desirable to see the

interface by the bombarding ions. For other than normal in- : > . ;
cidence, however, separate coefficients are needed in front §f0SSOver to asymptotic KPZ behavior i dimensions.
each term contained withifi2h and|Vh|2 (note that, with- The purpose of this study is to examine, in detail, the

out separate coefficients, we have rotational symmetry as V\}éehavior of the. KS equation. First, the early—time pehavior is
must for normal incidenge These terms can be derived from carefully exam_lned. Then, guided by the qualltgtlve a_lspects
a simple model of ion bombardment in which the particlesOf the (1+1)-dimensional case, we extend the simulations to

are assumed to penetrate a fixed distance into the interfad@"g€r times and larger system sizes. The results show, not

and then spread their energy out with an asymmetric, three’s_urprisingly, a crossover from the early-time behavior to an-

dimensional Gaussian distributidi8,4]. The —V*h term other scaling regime. The exponents are close, but not equal,
models the effect of surface diffusidh]. The noise term is t© the KPZ exponents.

present due to the randomness in the arrival of bombarding
ions at the interfacg4]. The 2D in Eq. (3) refers to the
variance of the noise term and is proportional to the rate of It is useful to perform a stability analysis by a Fourier
bombardmeni4]. transform of the linear terms of the KS equation. Denoting

(9P (7 1)=2D8(F~)ot—t). (3

Il. METHOD OF SOLUTION
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00075 . . - - - - - Because of the nonlinear term, the KS equation is stable,

lower cutoff ] but extra care had to be taken to ensure numerical stability.

The early-time simulations used the values=1, Ax=1,

0.0050 |- 1 and At=0.005, while the long-time simulations usBd=1,

| ] Ax=2, andAt=0.05. These were found to provide suffi-

T cient numerical stability for the parameter values used. Pro-
¢ 0.0025 |- . gramming was done in €+.

X | ] From the numerical integration data, it was possible to
&

K determine the time-dependent height-height correlation func-
0.0000

tion,
\ 1 H(F,t)=([h(F+F",t)—h(i",t)]?). 9)

005 010 015 020 025 030 035 040 Here,h is the interface height and the averaging is done over
Wave number, & ther” variable. If we assume that dynamic scaling still holds,

the height-height correlation function will take the foft#]
FIG. 1. Growth spectrum for the linear part of the KS equation

-0.0025
0.00

with v=—0.2 and«k=2.0 with the lower cutoff for a 258 256 ~ 5 r

system shown. H(r,t)=2[w(t)]°f )’ (10)

the spatial Fourier transform d¢f by F(h), we have with f(x)ox2® for x<1 andf(x)=1 for x>1. Herew(t) is
JF(h) the interface width defined bw(t)2=([h(r*,t).—ﬁ(r*,t)]zy
T:—kZVF(h)—k4KF(h), (4) &(t) is the lateral correlation length, and is called the

roughness exponent. In the scaling regime, both) and

wherek is the wave number. This impligsonsidering only ~ ¢(t) evolve in time as power laws,
the linear termsthat periodic solutions with wave numbler woctB (11)
grow like F(h)=e~ ("<t Hence, ify is negative, there
will be a range of low frequencies that will grow exponen- and
tially. Figure 1 shows the corresponding stable and unstable
regions. The critical wave number is given ky=\|v/«]. goct!, (12)
Of course, the nonlinear part of the equation will also be
factor in the time evolution of the surface. According to Ros
and Krug, the nonlinear term will couple modes with differ-
ent wave numbers, thus stabilizing the equafibi.

The method used to solve the KS equation is a simple

numerical integration. The first Step is to write the equationFor ear|y times, each of the exponents were obtained by
as fitting the function[15]

Ah o N[ 24D \Y2 [\ 2e
A_t:VV h—«V h+§|Vh| + m R(r,t), (5) H(r)zzwz[l_ex[{_(g)

3—|ere,8 andz are the growth and dynamic exponents, respec-
tively. In the dynamic scaling hypothesis, we have

z=alB. (13

] (14)

where R(r',t) is an uncorrelated uniform noise distributed to the equal-time height-height correlation function. This

between—1 and+1. It is useful to rescale the KS equation fynction was fitted in log-log scale using an algorithm that

using minimized the least-square difference. Since the long-time

, L, , height-height correlation functions do not have the form

h'=hihe, F'=rire, '=t/to. 6) given in Eq.(14), these exponents had to be determined in a

different way. Fora, this is done by fitting a line to the

< ¢ part of the log-log plot oH(r). The slope of this line is
ho=vIN, r2=1ty, to=xl/v? (7) 2. The growth exponent is found by fitting a line to the

log-log plot ofw. The slope of this line i.
we can eliminate all of the parameters from the equation
except for the coupling constant . RESULTS

If we let

g=D\?%/13. (8) In each of the simulations, the parametewas fixed at
v=—0.2, while the parameters and « were varied. By
This is the same coupling constant that is left over aftenvarying\, the coupling constarg could be varied. Varying
rescaling the KPZ equatiofl2]. The random number gen- « made it possible to vary the extent of the instability in the
erator used produces a uniform distribution and has an infilinear terms. Of coursex only affects the scaling in the
nite period[13]. The solution of Eq(5) is simply the solu- presence of an upper or lower cutoff kncaused by a finite
tion to an initial value problem in which the surface is lattice spacing or finite system size, respectively. For the
initially flat. early-time simulations, a 256256 lattice was used in each
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FIG. 2. Two-dimensional images for various growth times with .
the gray scale indicating the heidghtdark indicates lowh). Images -8
are 256<256 with v=—-0.2, k=2.0, andA=1.0. (a) t=4.85. (b)
t=21.9.(c) t=46.8.(d) t=100.0.

Height (arb. units)

] ) ) FIG. 3. Height distributions for various growth times with
simulation withAx= 1, andD was set equal to 1. The growth , = _.2 x=2.0, and\=1.0.

rates for low-frequency moddslue to the linear termsare o .
shown in Fig. 1 withy= —0.2 andx=2.0. The lower cutoff distribution function. If most of the surface features are con-

for a system size of 256256 is also shown. The upper centrated near the mean surface level, the kurtosis will be
cutoff due toAx =1 is equal to 2 and is not shoWn Clearly less than if the height distribution contained a larger portion

the uoper and lower cutoffs encompass most of the unstab f the surface features lying farther from the mean surface
upPp P Bvel. In addition, kurtosis describes the randomness of the
portion of the growth spectrum.

Fi 2 oh h h ¢ surf hol ¢ surface relative to that of a perfectly random surfé@auss-
igure 2 shows the snapshots of surface morphology 1o, gistribution that has a kurtosis of 3.0. Figure 4 plots the
v=-0.2, k=2.0, andA=1.0, att=4.85, 21.9, 46.8, and

_ i interface widthw, the skewness;, and the kurtosisn, as
100, respectively. There are no obvious “mounds” formednctions of growth time forw=—0.2, x=2.0, and\ = 1.0.

on the surfaces. With the increase of the growth time, therhe |og-log plot of the interface widtw is a straight line for
lateral length of the surface features becomes bigger and big= 10 with an initial growth exponen=0.22—0.25. This is
ger. Figure 3 shows the corresponding height distributionglose to theg value of the KPZ mode[12]. After t=30,

for these surfaces. Due to the presence of the noise term, thigere is a dramatic change 8f from 0.24 to about 0.7, as
distribution of heights was expected to be close to a Gausshown in Fig. 4. Initially, the skewness is close to zero, and
ian distribution. The solid lines in Fig. 3 are the Gaussianthe kurtosis is close to 3. However, with the increase of the
best-fit curves. For early times, the distributions appear to bgrowth time, both the skewness and the kurtosis increase
close to a Gaussian distribution, but at later times areuntil a maximum is reached. The dramatic changes in both
skewed. This is not too surprising, becausetthe—h sym-  skewness and kurtosis occur slightly earlier than that for the
metry is broken by the nonline4¥ h|? term. The deviation interface width. This shows that the nonlinear term took ac-
from a Gaussian distribution can be characterized by skewtion before the system became unstable.

nessm; and kurtosian,, defined as To determine the roughness exponent and dynamic expo-
nent, it was necessary to compute the height-height correla-
<[h(F)—F(F)]3) tion function. This was done at 20 different times for each
Mg=—""73 (15  simulation and the results far=—0.2, k=2.0, and\=1.0

are shown in Fig. 5. In the log-log plot, the time-dependent
L — height-height correlation functiont$(r) at different times do
:<[h(r)—h(r)] ) (16 ot overlap forr <¢, which demonstrates that the KS equa-
4 w# ' tion describes a growth process which is nonstationary for
early times[16]. At this point, the roughness exponednt
Skewness is a measure of the symmetry of a profile aboutetermined through Eg(14) is near 0.75-0.85, which is
the reference surface level. The sign of the skewness will teljuite different from the value of 0.38 that one obtains for the
whether the farther points are proportionately ab@asitive ~ KPZ equation in 2- 1 dimensiong17].
skewneskor below(negative skewnegshe average surface It is very interesting to study the time-dependent behavior
level. Kurtosis is a measure of the sharpness of the heighif the exponents. In Fig. 6, an average over 15 runs for both
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wld L il PR
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10 10 10 10 growth exponeni8 and roughness exponeatas a function
¢ (arb. units) of growth time for various\ values. In fact, the change of the

\ value affects the coupling constaptis shown in Eq(8).
FIG. 4. Interface width, skewness, and kurtosis vs growth timeThe larger thex value, the stronger the coupling. Clearly for
for v=-0.2,k=2.0, and\=1.0. each differend, 8 has a similar behavior as described above.
However, the onset of the increaseBnoccurs earlier for a
« and B as a function of growth timeis shown. These were stronger coupling. The change »falso affects the behavior
obtained by running 15 different simulations with different of a as shown in Fig. &). Initially, « is the same for dif-
random number seeds. The error bars represent the standdegent\. But at later timesq begins to decrease earlier &s
deviation of the results. The results foare shown in Fig. 7.  increases. The analytical result for-0 is shown in Fig. 8
The roughness exponeatremains almost the same through- as a dashed curve. This was obtained by computing the
out the growth, while the growth exponefitbehaves differ- height-height correlation functions analytically for different
ently. Initially 8 remains almost a constant, then at a certairiimes and fitting them the same way that the simulation data
time B starts increasing until a maximum is reached. TBen were fitted. The decrease i in the analytical result for
decreases. In their (41)-dimensional simulations, Sneppen early times is due to the deviation in the shape of the early-
et al. demonstrated thad can reach a maximum, after which time height-height correlation functions from the shape of
B will decrease to a constant for longer growth tif@é The  the fitting function. As the coupling constant gets bigger, the
same behavior can also be expected #12dimensions. effect of the nonlineafVh|? term becomes more important.
We also investigated the effect of the growth coefficientsThis term has two impacts on the surface morphology, i.e., to
\ and « in the KS equation. Figures(® and 8b) plot the  make the spatial frequency higher and lower. For the initial
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FIG. 5. Height-height correlation functions for various growth  FIG. 7. Dynamic exponert and a/B vs growth time with error
times forv=—-0.2, k=2.0, and\ =1.0. bars forv=—0.2, k=2.0, and\=1.0 averaged over 15 runs.
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FIG. 8. (8 Growth exponeniB vs growth time andb) rough- FIG. 9. (a) Growth exponeniB vs growth time andb) rough-
ness exponent vs growth time withv=—0.2,x=2.0, and various ness exponentx vs growth time with v=-0.2, A=1.0, and
\. The dashed lines represent the analytical resulhfe. variousk.

stage, as the noise is a white noise, the nonlinear term wilhis graph. First, the growth becomes stationary for later
render the spatial frequency equally to the lower and highefimes. Second, for later times, the height-height correlation
end. However, the linear term will amp“fy |Ow_frequency functions exhibit a bifractal structure with two different
parts and eliminate high-frequency parts. Therefore, initially Foughness exponents. For=2.0, the upper part has a rough-
the nonlinear term helps the low-frequency accumulationness exponent of 0.27 and the lower part has a roughness
Thus, « will increase slightly. Alsog will increase. How-  €xponent of 0.71. Forh=1.0, we obtained 0.28 and 0.76,
ever, as the amplitude of the low-frequency componentgvhile A=4.0 yielded 0.25 and 0.65. The values for the
passes a certain value, the nonlinear term will start to elimigrowth exponent were found to be 0.21, 0.18, and 0.16 for
nate the low-frequency part. That will reduce both thend A=1.0, 2.0, and 4.0, respectively. For=4.0, a 1024

B values. Increasing the value will increase the rate of the
coupling, thereby making the onset earlier.

A change ofk will also change the behavior efandg as
shown in Fig. 9. This change is different from that caused by
varying\. The initial 8 and « values are slightly different for
different « values. For later times, changingamounts to
changing the location of the peak ghand not the height of
it. This is consistent with the rescaling resyt «/v>. This
is also understandable in terms of the stability of the equa-
tion. A higher value ofx will make the linear terms more
stable for a giverk, thus delaying the increase |8 The y
same behavior also occurs far although it is much less I —e— 1 =10 7
obvious since the graph af is relatively flat compared to
that of 8.

We also investigated the long-time behavior of the KS
equation. The main difficulties in obtaining the long-time
behavior of the KS equation were the need to increase the
length of time over which the equation was integrated and
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the need to increase the system size enough to delay the | H\;>‘

onset of saturation. To delay saturation, we used a 512 0.0 NN RN

X 512 lattice and seAx=2. Figure 10 shows the interface 10° 10! 10°

widths and growth exponents for different valuesiofThe t (arb. units)

growth exponent was close to 0.20 in each case. The height-

height correlation functions for different times wit=2.0 FIG. 10. Long-time values of interface widtlv and growth

are shown in Fig. 11. There are two interesting features oéxponents for v=—0.2, k=2.0, and\=1.0, 2.0, and 4.0.
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FIG. 11. Long-time height-height correlation functions for vari-

ous growth times fow=—0.2, k=2.0, and\ =2.0.

X 1024 simulation was also run, and the interface width is
shown in Fig. 12. Up td=2000, there is still no sign of a

crossover to another scaling regime.

IV. DISCUSSION

From a theoretical standpoint, the interesting aspects q
the KS equation are its long-time scaling properties. Ther
(1+1)-dimensional numerical results of Sneppedral, for
the deterministic case, show the presence of early and inte
mediate scaling regimes, after which the growth exponen
behaves like the (£ 1)-dimensional KPZ exponef2]. Our
simulations clearly indicate the presence of an early-time

10°

PRE 59

growth and roughness exponents in this regime are notably
less than the KPZ exponents. This could mean one of three
things. First, it could mean that the asymptotic properties of
the KS equation are not exactly those of the KPZ equation.
Second, it could mean that our simulations have not yet
reached the asymptotic regime. This second possibility is
also supported by the presence of early, intermediate, and
asymptotic regimes in the (1)-dimensional deterministic
case. The third possibility is that our results might not cor-
respond to the strong-coupling limit of the KPZ equation.
Our own numerical integration of the KPZ equation shows a
roughness exponent of 0.29 fgr= 23, which is very close to

the long-time values we observe for the KS equation. How-
ever, Amar and Family find a roughness exponent of 0.39 for
g=>50 and 0.37 forg=20[18]. This indicates thatr might

get smaller as the weak-coupling=0) limit is approached.

Of course, the behavior should cross over to strong-coupling
behavior for larger system sizes and longer tinj&s].
Hence, our late scaling regime might correspond to early-
time KPZ behavior.

It is also instructive to compare our results with other
numerical results for the deterministic KS equation. Procac-
ciaet al. have looked at the deterministic KS equation using
direct integration [10]. They conclude that the long-
wavelength properties of the deterministic KS equation in
+1 dimensions are not the same as those of the KPZ equa-
on. In fact, they claim to show that=0. Our simulation
esults appear to contradict this result for the noisy KS, but
Procacciaet al. do not speculate on whether their results
%’hould apply to the nondeterministic case. Furthermore, it is
unlikely that even the deterministic ¢21)-dimensional KS
equation exhibits only Edwards-Wilkinson behavior. Procac-
cia et al. find « by looking at the dependence of the satura-
Sion interface width versus system size. The log-log plowof

early-time behavior is consistent with Mullins diffusion, but
the roughness exponent is not consistent with justtR&h
term. Furthermore, these exponents cannot be explained b
just the linear terms in the equation. Clearly, the interplay of S
the linear terms with the nonlinear term is responsible for thef
observed exponents, and it is only for very long times that}
one term in the equation dominates. What is not entirely &

3“3 5, .Q'

(@) 1=219.0

Interface width w

10° 10! 10° 10°

(¢) t=700.5

t (arb. units)

versusL is shown forL ranging between 32 and 512. How-

(d) t=1000

FIG. 13. Long-time two-dimensional images for various times.

Images are 512512 with Ax=2.0, v=-2.0, k=2.0, and

FIG. 12. Interface width for 10241024 long-time simulation
with v=-0.2, k=2.0, and\=4.0.

A=1.0. Only a 25& 256 portion is shown(a) t=219.0. (b) t
=468.0. (c) t=700.5. (d) t=1000.
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TABLE I. The measured scaling exponents for several different ion-sputtering experiments are shown.

System Method EnerggeV) a B Reference
Fe STM 5000 0.530.02 [19]
Si(111) STM 500 0.70.1 0.25-0.05 [7]
Si(111) HRLEED 500 1.15-0.08 [20]
Ge(00D) X-ray 1000 0.1-0.01, [21]
diffraction 0.4£0.05
Ge(00D) STM 240 0.76¢-:0.03 [8]
Graphite STM 5000 0.2-0.4 [22]
GaAq110 STM 300-500 0.26, 0.31 [23]
GaAq110 STM 2000 0.380.03 [24]
Sio, Energy-dispersive 1000 1.0 [25]
x-ray reflectivity
Sio, Energy-dispersive 150 0.5 [26]
x-ray reflectivity 300
1000

&This value was estimated from Fig(t3 of [8]. Also, the growth for this system is not self-affif&].

ever, for system sizes as small asx3@2, saturation will tain a growth exponent consistent with Mullins diffusion,
occur very early, and the asymptotic behavior will not bebut, at later times, the growth exponent increases and then
observed; even with a 5%%512 lattice it is difficult(if not  decreases to the Edwards-Wilkinson value. KPZ behavior is
impossible to see the asymptotic behavior. Rost and Krugobtained for only a short amount of time before saturation
have done (% 1)-dimensional simulations of a particle occurs. This behavior is almost identical to the behavior ob-
model based on the KS equatiftil]. Their model takes into  tained by Sneppeet al. for the deterministic cage2]. In our
account the cellular structure that evolves in systems desimulations, we obtain a region in which the growth expo-
scribed by the KS equation and gives exponents that coincideent is consistent with Mullins diffusion, followed by a re-
with the KPZ exponent$11]. While our results cannot be gion in which g increases suddenly and then decreases; how-
expected to agree with the ¢11)-dimensional case, we do ever, the region following this increase does not appear to be
see a cellular structure develop in the long-time surface moreonsistent with Edwards-Wilkinson growti8&0).
phology, as shown in Fig. 13. This cellular structure is also The results of our simulations reveal exponents that, for
observed by Jayaprakash, Hayot, and Pandit in their (2arly times, are quite different from those of the KPZ equa-
+1)-dimensional simulationg9]. tion. The results of various ion-sputtering experiments are
Cuernoet al. have done (* 1)-dimensional numerical shown in Table I. For comparison, we list in Table Il the
integrations of the noisy KS equati¢f]. Initially, they ob-  theoretical results of the exponents predicted by different

TABLE II. The predicted scaling exponents for several different-(@-dimensional growth equations

are shown.
ohlot= Name a B z Reference
7 Random 0.5 [17]
deposition
V2h+ g Edwards- 0 0 2 [17]
Wilkinson
V2h+|Vh|2+ 9 KPz 0.38 0.24 1.58 [17]
—V*h+7y Mullins 1 : 4 [17]
diffusion
V2h—V*h+7g General linear 04 0-0.2% 2-4 [27]
Equation
—V?h—V*h KS (early time 0.75-0.80 0.22-0.25 3.0-4.0 This work
+ |Vh|2+ 7
—V2h-V*h KS (late time 0.25-0.28 0.16-0.21 This work
+|Vh|?+ 5
—V2h-V*h KS (early time 1 4 [1]
+|Vh|2+ 5 from RG approach

#These values are for finite system size and finite lattice spacing. For infinitely large system size and infinitely
small lattice spacing, the exponents are equal to Mullin’s diffusion values for early times and crossover to the
Edwards-Wilkinson values for later tim¢a7].
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growth equations. The general trend is that the values of Gaussiaf4]. However, the assumption of a Gaussian distri-
for low-energy (less than 1 keY sputtering tend to agree bution holds only for low ion energies and breaks down for
with the initial stage of our simulations, while the high- high ion energied30]. Furthermore, a higher energy will
energy(greater than 1 keMexperiments have roughness ex- shorten the crossover time, allowing the KPZ behavior to be
ponents more consistent with the KPZ equation. In particuobserved.

lar, an ion-sputtering experiment performed by Chan and

Wang, using STM, shows agreement.w?th the initial ;tage of V. CONCLUSION
our simulation results that is well within the experimental
error [7]. The ion-sputtering result of Yangt al,, using a The simulations we have performed should be considered

diffraction technique, showa=1.15+0.08[20]. This result as a first step in explicitly demonstrating the scaling proper-
is certainly not consistent with the KPZ equation, but neitherties of the KS equation in 21 dimensions. The long-time

is it consistent with our simulation results. A possible expla-exponents are close to the KPZ exponents, but our results do
nation for the high value ok is that Yanget al.assumed that not answer conclusively the question of whether the KS
the distribution of heights was a Gaussian. As Zle@l. equation is in the same universality class as the KPZ equa-
showed recently, if this criterion is not met, then the neartion. A firm answer to this question would require longer run
out-of-phase diffraction analysis presented by Ya@l. times and larger system sizes in order to rule out the possi-
would not be adequate for the extractionaof28]. Also, one  bility that our observed long-time scaling regime is, in fact,
Ge(00]) sputtering experiment shows a transition betweeran intermediate scaling regime.

two different scaling behaviors as a function of temperature

orion curren21], while another shows the development of ACKNOWLEDGMENTS

ripples[29].
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